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We study the spectrum of the generator Hp of the Glauber dynamics for a 
model of planar rotators on a lattice in the case of a high temperature I/ft. We 
construct two so-called one-particle subspaces )if• for Hit and describe the 
spectrum of the generator in these subspaces. As a consequence we find time 
asymptotics of the correlations for the Glauber dynamics. 
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1. I N T R O D U C T I O N  A N D  DESCRIPTION OF THE MODEL 

We study here stochastic (Glauber) dynamics for an infinite system of 
plane rotators in the high-temperature regime. This dynamics (given by a 
Markov semigroup) is constructed in such a way that a Gibbsian distri- 
bution /~ for the system of plane rotators (the so-called X Y  model) is 
invariant with respect to the dynamics. By using this semigroup we can 
define a reversible stationary Markov process with the stationary distribu- 
tion/~. Such an approach to the study of Gibbsian measures began with 
works of Dobrushin, (6~ Holley, 171 and Holley and Stroock ~g'91 and was 
developed extensively and intensively in the study of many models of classi- 
cal and quantum statistical physics, quantum field theory, etc. For a review 
we refer the reader to refs. 3 and 12. 

Let us denote by H the generator of the stochastic dynamics, i.e., the 
generator 0[" corresponding Markov semigroup acting in the space L-'(f2,/2) 
(O is the phase space of our system, see below). We are interested in the 
spectral properties of the self-adjoint operator H, namely in the structure 
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614 Kondratiev and Minlos 

of the lower branches of its spectrum. We find two invariant subspaces 
(aft+, ~ ) for H (so-called one-particle subspaces) and describe in detail 
the spectrum of H in these subspaces. We also show that the remaining 
part of the spectrum of H lies above that spectrum. 

From the general point of view we deal here with the wider idea which 
consists in establishing a quasiparticle picture for the operator H which 
controls the dynamics of a system with an infinite number of components 
with a local, translation-invariant interaction. 

The first step is to find the so-called one-particle subspaces ,~  ,..., 
for the operator H. These subspaces are invariant with respect to the 
operator H and are cyclic with respect to a group of translation operators 
U.,.. We assume that this group is isomorphic to the lattice 7/'/. There exist 
unitary mappings 

1@ Hi--* L2(T a, d2) 

where T a denotes the d-dimensional torus, i.e., the group of characters of 
the group 77 '/. These mappings transform the operators U.,.I J g,-and HI 
into the multiplication operators by the functions 

expi(2, s), 2 e T  a, s e Z  a 

and 

mi(2), 2 e T a 

respectively. The spaces ~ ..... :s~. describe states of quasiparticles (elemen- 
tary excitations). The function mi(2) is the dispersion of a particle of the 
ith kind, i.e., mi(2) is the energy of this particle as a function of its 
quasimomentum 2 ~ T'( 

The present work is devoted to this first step in the picture of the 
quasiparticle representation. The next step in this picture is a description of 
the whole system as a "free gas of quasiparticles" as well as an investigation 
of their "bounded states." This step is described in detail in refs. 14 and 16. 

The problem of constructing the one-particle subspaces is well 
developed in the case of lattice models of quantum Euclidean fields with 
weak interaction in discrete space-timeJ H~ 

In the case of continuous space with continuous time the one-particle 
spaces for the P(~b)~ model were constructed in the pionering work of 
Glimm, Jaffe, and Spencer with the help of the cluster expansion for the 
corresponding Markov field, c~71 In the present paper (as well as in ref. 15) 
the spectral analysis of Markov field generator with continuous time is 
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performed without using the cluster expansion of the whole field. We 
believe that this is an essential technical achivement in the model. 

Let us go to exact definitions. The lattice used in our model will be the 
d-dimensional square lattice 7/a for some d e  N. For  k = (k  ~ ..... k la~) e Z a 
we shall use the norm [k] =[UI)l  + .. .  + ]k~al]. The single-spin space of 
our model is the unit circle T in the plane. We identify the circle with 
[0, 2n], where 0 and 2n are considered to be the same point. We use the 
normalized Haar  measure [ 1/(2~)] d x = d v o ( x )  on T. The phase space of 
the model we consider is the infinite-dimensional torus 

0 = TZ"~  x = (Xk)k ~ z,, 

endowed with the product topology and with the natural product measure 
dlzo(X) = X k , z , , d v o ( x k ) .  Given A ~Z a, 

I2~XW-~ XA = (Xk)k~n ~ T "I 

denotes the natural projection, and the symbol C](O)  denotes the set of 
functions o n / 2  of the form 

O ~  x ~ f ( x , , )  e C 

where f runs over the set Cr (T  A) of continuously differentiable (up to the 
order p) complex-valued functions on T A. We shall use also the set of 
finitely based functions 

~ - c , ( o )  = U c,~(o) 
A: I,II < 

The Hamiltonian of the X Y  model is formally given by 

U(x )=  - ~ cos (xk -x j ) ,  x~s (1.1) 
( k j )  

where ( k j )  denotes, as usual, a pair of nearest neighbors of 7/'1. The equi- 
librium state of the X Y  model at the inverse temperature fl > 0 is defined 
as the Gibbsian modification /z/~ of the measure Po by using the 
Hamiltonian f lU(x ) .  Formally speaking, it means that p/~ is a probability 
measure on s of the form 

1 
d~, , (x)  = ~/~ e-t~u~")dlto(X ) 

For sufficiently small fl such a measure is uniquely defined and has many 
good properties (see, e.g., ref. 5). Actually, the choice fl > 0 is done for the 

822/87/3-4-10 



616 Kondratiev and Minlos 

simplicity of our formulas. With the same success we can consider also 
(small) fl < 0. 

For  the construction of the stochastic dynamics in the X Y  model we 
start with the classical Dirichlet form which corresponds to/z/~. This form 
is defined for u, vE,~C~(s as 

Ou Og 
~(u' v)= ~a ~.~, , OXk OX~. dp/~ (1.2) 

Let us introduce for any k e 7/d the operator Vk in L2(p/~) on the domain 
~-C~-(t2) by the formula 

L2(p/r ~ ~ C ~(g2) ~ f s--~ Vk f  = ~ ~ ~ C  ~(12) (1.3) 

Then the definition of the Gibbs measure/t/s gives the following representa- 
tion for the adjoint operator V~': 

V ' f  (x) = --Vkf(x)  -- b~.(x) f(x)  (1.4) 

with 

bk(x) = --fl ~ sin(xk -- X,) ( 1.5 ) 
l :  I / -  k[ = t 

We introduce the differential operator H/~ on the domain ~(H/j) in L2(/.~/~) 
by the formula 

a2f(x) 
(Hi, f ) ( x ) = -  ~,, axe. 

k �9 27 'l 

b~.(x) Ofo(~k) (1.6) 
k ~ 2~'1 

By the definition of ~/~ and (1.4) we have 

(H/r V)L'-Im,)= ~/~(U, V), U, V ~ ~C2(1-2) 

The operator H/~ is a symmetric operator in LZ(pl~). As was shown in 
refs. 1 and 2, Ht~ is an essentially self-adjoint operator, i.e., the closure of 
H/~ in L2(l~/~) is a self-adjoint operator. For  this closure we keep the same 
notation. Then the stochastic dynamics in the XY model is defined via the 
Markov semigroup 

T{ * = e -m/,, t >~ 0 
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This semigroup generates a symmetric diffusion process on the infinite- 
dimensional torus g2 with the invariant distribution/t/~. Such a diffusion 
can be constructed directly as the solution to an infinite-dimensional 
system of stochastic differential equations with the state space/2, t ~0~ 

Finally we mention another interpretation of the operator H/~ as a 
"ground-state Hamiltonian" of an infinite system of quantum particles 
attached to each point of the lattice Z '~ and moving on T. To this end we 
introduce a formal potential of interaction between particles in the form 

1 t fl ~ sin(x, - x,) - - Y" cos(xk - x/) Vr~ 2k~z'~ 2 /:l/-~-I=l /:l/-kl=t 

and a formal Schr6dinger operator of the system as 

9 2 

/of ore,= - Z V om, 
k E Z 't 

For a rigorous definition of the quantum dynamics in the model considered 
we will use the following "ground-state renormalization scheme" (see, e.g., 
refs. 11, 4, and 14). For  any finite ,4 c 7/d we introduce the Hamiltonian of 
the system in the volume A as a self-adjoint operator in the physical 
Hilbert space 

L2(T A, v ~), dv . . (x . , )  = X dvo(X,) 
k ~ A  

as follows 

0 2 

H A = - - ~  ~ + V A ( x A )  
k~A OX~. 

where V,~ is defined similarly to Vro ..... but the summation is extended over 
k, l ~ A. It is easy to check that the function 

1 P Z x,)} ~bA(x,,) = ~ exp {~ <./> = .4 cos(xk - 

is the normalized ground state of HA. Here N,s is the normalizing factor, 
1-1,, ~b A = EA ~b A, EA = inf sp(HA). Let us introduce the unitary map 

L2(T A, v ~)~ ~b ~---~(~5'~b EL2(TA, gA) 
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where PA = ~bA vA- This map transfers the shifted Hamiltonian H A -  EA into 
the renormalized Hamiltonian H,t .... given by the Dirichlet operator 
associated with the measure PA: 

02 [ 
HA .... =--k~A ~x~ -+fl ~" ~ s i n ( x k - x , )  ~ (1.7) 

k e . ' !  I ~ A :  I I - k l  = I 

Under our assumptions about fl the measures /~A converge to the limit 
measure P/~ when A ~ -~ Z u in the local weak topology. This means that 
for any f~  ~C(D) we have 

fr, f dll,,--* f f dp/~, A--* Z a 

Having in the mind this picture, we can consider the operator H/~ as a 
renormalized operator of the infinite quantum lattice system in the ground 
state corresponding to Hrorm. 

Note in conclusion that our constructions and results immediately can 
be extended to a more general class of models in which the interaction (1.1) 
has the form 

U(x) = ~ J~_jP.(xk) P=(x A 
~ , k , j  

where P~, ~ ~ A, are trigonometric polynomials, and the index ~ runs over 
a finite set A, and J.,., s E Z a, is a finite support function on the lattice: 
J.,.= 0, Is] > R  for some R ~ N. Moreover, apparently everything can be 
extended to the case of unbounded spin systems with a polynomial self- 
interaction potential. This will be the subject of a forthcoming paper. Let 
us remark that analogous results with respect to the Ising model were 
obtained by one of us in ref. 15. 

2. RESULTS 

Let { Ui IJ eZa} be the unitary group of translations acting in L2(B/~) 
by the formula 

(Ujf)(x) = f (v ix  ) 

where (rjx)~ = xk _j is the shift of a configuration x ~ g2 by the vector j e  7/a. 
This group obviously commutes with Ht~. There is another unitary group 
of (continuous) symmetry: 

{ Vqlq ~ T}, (Vuf)(x) =f(x  + q) 
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where (x + q)k = Xk + q. This group also commutes with Ht~. The generator 
M of the unitary group Vq has the following form: 

( M f ) ( x ) = i  ~ 0f(x) f ~ . C ~ ( i 2 )  (2.1) 
k e Z 'l ~ X k  ' 

R e m a r k  2.1. With the physical interpretation of H a as the energy 
operator of vacuum excitations [see (1.7)] the operator M is the charge 
operator. Then the spaces 5(f+ and ~ _  constructed below describe particles 
with the charge + 1 and - 1 ,  respectively. 

Finally, there exists a unitary involution 

(J f ) (x )  = f ( - - x )  

which also commutes with H/~. 
Let us denote by d/' the set of finite support multi-indices: 

J r  n(k) e Z, n(k) =0 ,  ]k] >N(n)  

For n ~ '  we put IlnllZ=Z~.~z,ln2(k). In the case f l = 0  the orthonormal 
basis in the space LZ(kt0) is formed with the functions 

e,(x) = X e i''~k~~', n ~ ./# 
k e Z '1 

These functions are the eigenfunctions of the operator H0: 

Hoe,, = ~" n2(k) e,, n �9 
k E •,1 

From this we see that the operator H o has the following eigenspaces: 
jir = C (so-called vacuum space) corresponding to the eigenvalue 0, and 

} . 0 {  t "klt'~ = Ck ei'x'~ - = Z C k e - - i x x  

k ,I k ~ Z '1 ) 

which correspond to the eigenvalue 1 and are called the one-particle sub- 
spaces. These spaces are also proper for the operator M with the eigen- 
values + l, respectively. The spectrum of Ho in the orthogonal complement 
to jt~oO@~+,, o 0)~o_ consists of the eigenvalues Ek=2 ,  3 .... of infinte 
multiplicity. 



620 Kondratiev and Minlos 

The perturbed operator H/~ has obviously the same vacuum space. We 
clarify the situation with one-particle subspaces of H/~ in the following 
theorem. 

T h e o r e m  2.1. For small enough fl there exist two orthogonal sub- 
spaces ~ +  c L2(/1/~) which are invariant with respect to the operators H a, 
Uj, and M. The operator J transforms each of them to other: 

Jag_+ =ag-v 

The spectra of the operators 

H +_ = H I~ [ .,~ • 

in the subspaces ag+ coincide and lie in some small neighborhood of the 
value 1. More precisely, there are unitary maps 

V + : Jfl+_ --+ L 2( T a, dA ) 

[ T a is the d-dimensional torus with the Haar measure 

d2=dvo(2~')) . . .dvo(2~d~),  2 = ( 2  'l ~,..., 2 Idl ) e T a ] 

which transform the operators H+ into a multiplication operator 

(ffIf)(2) = ff7(2) f(2), f e L ' - ( T  a, d2) 

and the operators UJ, J e 7/d, into the operators 

(Ujf)(2) = exp{ i(2, j)} A2), 
d 

(2, j )=  y'  2''~} ''~ 
s =  I 

The function ff7(2) is an analytic function in some complex neighbor- 
hood W of the torus T d (this neighborhood will be described below) and 
has the form 

d 

ff~(,l) = 1 -2/~  ~ cos ; t ' '~+x(2) 

where [x(2)[ < Ctfl'-, 2 e  IV, with an absolute constant C,. 
The spaces affe consist of eigenvectors of the operator M with eigen- 

values + 1, respectively. 
The spectrum of H/~ in the orthogonal complement to afro @ aft+ ~ aft_ 

lies above the value 2 - C2fl, where C2 is an absolute constant and thus is 
isolated from the spectrum of H/j in age- 
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Remark 2.2. As usual, we say that a closed subspace ~ '  c Jt ~ is an 
invariant subspace of a unbounded operator  H in ~f' if there exists a set 
2'  ~ J#' ~ D(H) which is dense in 3~" and such that H ~  c ~r 

Theorem 2.1 gives as a consequence an asymptotics for the decay of 
correlations of the Markov  process ~(t) = {(k(t) lk e 7/d}, t/> 0, generated 
by the semigroup T~( Let ~ '  denote the probability distribution of this 
process. For  any koeT/d and given f ,  geC(T) ,  I f (q )  eiqdvo(q)r 

g(q) e "~ dvo(q) v~O or j f (q)  e -~q dvo(q) vLO, ~ g(q) e - i q  dvo(q) v~O, we con- 
sider the correlation 

I~k"l(D = (f(~k0(0)), g(~k,(t))).~ s  z 

= (f(~k,,(0)) g(~k,,(t))).r ( f ( (k , (0 ) ) ) . , ,  (g(~k,,(t))).r 

Here ( . ) ~  means the expectation with respect to the measure ~ .  

Theorem 2.2. The following asymptotics is true 

I~k~(t) = ~ e  .... '(1 +o(1)), t---~ oo 

where 

m = min r~(2) 
2 ~ T d 

and C = C(f, g) is a constant depending on f and g. 

3. THE C O N S T R U C T I O N  OF THE ONE-PARTICLE  
S U B S P A C E S  ~e+ A N D  o~_ 

3.1. Pre l iminary Considerat ions 

Let us introduce the space L of functions on [2 having the form 

f (x )=  ~' f,,e,,(x) (3.1) 
n ~ . / /  

with the condition that II f II L ~ Z ..... ,~ I f,,I < oo. Note that under this con- 
dition the series (3.1) converges absolutely and uniformly on O. Evidently 
L is isomorphic to the space lj(Jg). It  is obvious that L is a dense subset 
of L-'(/O) and 

VfeZ ,  IlfllL%,zj~ IlfllL (3.2) 
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For any bounded operator B in L we denote by B..., its matrix elements 
in the basis {e , , Ine~[}:  

Be,, = ~.. B.,,,,e,,, 
I t '  E . / [  

Note that the coefficients o f f  in the decomposition (3.1) are transformed 
by B as follows: 

= Z 8,,, ,,f,,, 
It' 

It is clear that for the operator norm of B in L we have 

IIBI[L=SUp ~ IB,,,,,,I 
I !  I t '  ~ , f f  

Further, we will use the following simple lemma. 

L e m m a  3.1. Let B be a symmetric operator in L2(/t/~) such that 
BL c L and the restriction BI t  is a bounded operator in L. Then B is a 
bounded operator in L2(/U~), and we have the following inequality between 
operator norms: 

with 

IIBII *--'l,,/,~ ~ IIBII t 

For the proof see ref. 15. 

By using (1.5), (1.6) it is easy to calculate that 

H/je,,= Ilnll2 e,, + fl ~ W,,,,,,e,,, (3 .3 )  
n" 

W,,.,,,=an(u(b)) if n '=n+mT,  forsome m~ (3.4) 

and W,,.,,. = 0 otherwise. Here b = (u, v) is an oriented edge of the lattice, u 
is the beginning and v is the end of b, a = _ I, and m~ e ~r162 is the function 

{ cr, k = u 

m~(k)= - a ,  k = v  

O, k ~ u , v  

We denote by/Z a subspace of L which consists of finite sums of the form 
(3.1). From (3.3), (3.4) we see that H I j L c L .  
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Let us introduce the following notations: for any n e J g  we put 
(in addition to Ilnll) 

o'(n)= ~ n(k), Inl = ~ In(k)l 
k ~ ~ , t  k ~ 2~ 'l  

Further, 

.M~ = {n ~.M Io'(n)= +1, Inl = 1} 

~.+>, = {n~./glo'(n) = +l,_ Inl > 1} 

~',r~s, = {n m ~'1 la(n)l # 1, I n l> l }  

Let L ( ,  L +l, Lrest be the corresponding subspaces in L: 

Then we have the decomposition 

f,,e,,} , 
n6.[[~ 

etc. 

L = L o +  L ~" + L? + L +~ + L ~  +L~cs, 

where Lo = C. Introduce the spaces 

L+-=L~ + L  + 7~u 

L e m m a  3.2. The spaces Lo, L e, and L~:s, are invariant with 
respect to Hrs. 

Proof The spaces L • are proper for the operator M with the 
eigenvalues + 1, respectively. Because H/~ commutes with /14, we have 
H/s[, -+ ~ L  -+, where / .•  = L  +- c~/~. The space Lrest admits the decomposi- 
tion L~r = Z r ,  _+K U"~, where 

L,-{, ,e) 
n E .  # res t  .or( It ) = I" 

Each L Irl is proper for M and H/r ~. From this H/~ErcstcE~t 

Furthermore, the spaces - + - L o - C ,  L[~, Lt~, Lrest. fjcL2(l.lij) [the 
closures of L +, L - ,  Lrcst in the norm of L2(/~/j)] are mutually orthogonal. 
Thus we have to study H/~ in each subspace L/;, L/7, and Lrcst./~ separately. 
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3.2. The Est imate of the Spectrum of H~] t .... 

Lemma 3.3. The operator 

Hit I Lr,~, = nil .  rest in Ernst 

is invertible and its inverse Ha.r~s, is bounded  (in the n o r m  of L)  and 
extends as a bounded  ope ra to r  on Lrest with the following n o r m  estimate:  

1 
- - i  (3.5) [IH/~.r~,ll z_ < 2( 1 - 4fld) 

Corol lary  3.1 .  F r o m  the est imate (3.5) and L e m m a  3.1 it follows 
that  

II ( H  I L.~,./,) - '11L-'c,,,) < 
2( 1 - 4fld) 

(3.6) 

and therefore the spec t rum of  H/r in Lrr lies above  2 - 8fld. 

Proo f  o f  Lornma 3.3.  It  is convenient  for us to identify a function 
f i x ) = ) - ' .  .... //r,,f,,e,,(x) f rom Lrr with the sequence of  coefficients 
{f, ,IneJl, . ,:~t}. We will use the same identification also for o ther  spaces 
considered. Then by using formulas  (3.3), (3.4) we can transfer  the 
opera to r  H/j.re~t f rom functions on cor responding  sequences. Keeping  in 
mind  such transfer, we write 

HIs.res, - H ~ + f lWres ,  - -  f l ,  r es t  

where 

0 "~ (H/~.restf),, = Ilnll- f , , ,  n e d4r~s, 

( Wrestf)" =f l  Z w,,. ,,f... 
It' E. / /rest  

/ ' / ~  "////rest 

(3.7) 

Further ,  

H - I  o - 1  i /,,ro~, =(H/,,,,-~t) ( E +  V ) -  

W t H  ~ ~- ~ and  E is the identity ope ra to r  in Lrc~t. Then  where V =  resO. /t. rest J 

1 vy),,-- 2 w,,,,, 
i1' 
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From this 

1 
llVfllL~//~. IW,,.,,I ~ If,,,l 

n,lt" 

If,,,I Z I w,,, ,,. +,,,~1 
=/ /  , IIn'll 2 i~.b~.,,(~l~s,pp,,' 

If,,.I 
<2/1 ~ iin, ll 2 y. In'(u(b))l 

' h,  u( h ) �9 supp # 

In'l If,,.I <~4fldllfllL <arid ~ iin, l - -~  
tl ' E,//rest 

This gives 

II(E+ ~ - ' I I L < - -  
1 - -  4 f l d  

and hence 

llH/~,~llt_~ < I ( H ~ s ~ )  - t  L I[(E+ V)- t l IL< 
2( 1 -- 4fld) 

The lemma is proved. I 

3.3. The Study of H~ in the Space L + 

L e m m a  3.4. There are two closed subspaces s c L  +, ~ + > t ~  L + 
such that 

+ 

and each of them is invariant with respect to Uj, j ~ 77 '1, and the operator H/~. 

Proofi The decomposition 

L+ =L~- + L  + > 1  

generates the representation of H + = Hi, It.+ by the matrix 

in which H~o: f~- r,~', H ~ :  - +  - ---, L>I --* L; ~, etc. 
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We find the spaces 2 '  ~- and 2" >, + in the form of the graphs of some 
operators 

S: L~--'.L+>, 

and 

namely, 

T: t+>,---}t~ - 

2" ~- = {u + S u l u e  L, + } (3.8) 

2"+ >, ={v+Tv lveL+>,}  (3.9) 

The requirement of the invariance of the spaces 2" ~- and 2" >+t is equivalent 
to the relations 

S(H~o + H~ S) = H ~  + H~  S 

and 

T(H~o T+ H~) = H~o T+ Ho, 

These relations [ under the assumption that ( H ~ , ) - '  exists ] can be rewritten 
a s  

S= (H~t)-' SH~o+(H~)-' SH~ -(H~)-' H~o (3.10) 

T =  + + i + + i HooT(H1,)- - T H ~ T ( H ~ ) - t  +Ho,(Ht l )  - (3.11) 

The existence of (H~,)-a and an estimate of its norm will be obtained 
below. In the following we use the notation 5f(E,  ~ E,_) for the space of 
bounded linear operators from a normed space E, into a normed space E z 
equipped with the operator norm. 

I . e m m a  3.5. Let us suppose that f ld<l /100 .  Then there exist 
unique solutions S and T to the equations (3.10), (3.11) with small norms: 

IISII ~'ILg-~ L +,} ~ ll]~d 

IITIt~.,+ Li~,~< ll/~d 

Proof. We can consider the right-hand side of Eq. (3.10) as a map 
of the space 2"(L ~- ---} L >+, ) into itself. We shall show that there exists a ball 

{ S e  2"(Z~- ~ L +>,)I IISII~,L;- --L>, 
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which is transformed by ~ into itself, and that ~ acts on this ball as a 
contraction. 

For simplicity of notation, for a bounded linear map B: Ej--, E2 
between subspaces E I , E 2 c L  we will denote by Ilnll the norm of B in 
5a(Ei -+ E2). 

For the study of ~- we need to estimate the norms [IH~oll, IIH~II, 
I[H~oll, and II(H~)-~II. By using (3.7)just as in the proof of Lemma 3.7, we 
come to the following results: 

1. I[(H~)-*II < � 8 9  

2. IlH~oll < 1 + 2fld 

3. IIn~,ll < 4 p d  

4. IIn~oll < 2fld 

From this, for any S e Ae(L ~+ --+ L >+, ), we have 

II~SII < 12 + 2fld 4fld 2fld 
- 8 f l d  IISII -~ 2 - 8 f l d  IISII2 -~ 2 - 8 f l d  

Then for any x which satisfies the inequality 

l + 2 f l d ,  4~d , .  

2 _ 8 fl d X -t- ~ - ~  x -  * - 

2fld 
2 - 8 ~ a  

< K  

the mapping ~ transforms the ball 

Y~-= {SI IlSII <K} 

into itself. Furthermore, if in addition 

1 + 2,b'd. 8fldx 

2 - - 8 ~ + 2 _  8fld < 1 

then ~- acts "insde Y~. as a contraction. For fld<~ 1/100 we put K=  l l f ld .  It 
is easy to check that then both inequalities are fulfilled. Lemma 3_5 is 
proved, and as a result the existence of subspaces s ~" and A ~ >+, in the 
form (3.8), (3.9) is proved also. From the uniqueness of the solutions to 
Eqs. (3.10), (3.11) it follows that S and T commute with operators Uj, 
j ~ E'( The latter implies the invariance of 0~ ~- and s >+ ~ with respect to the 
group U/, j c  ~d  
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In order to show the decomposit ion L + = .~a ~- + .W >+ ,, we should get 
for every f = f ,  + f >  i e L +, f t  e L t +, f > ,  e L >+ i the decomposit ion 

f = u + S u + v + T v ,  u e L ~ ,  v e L + l  

with u + Tv = f , , v + Su = f >  ~. Then 

v - S T y = f > , - S f l  

and 

u -  T S u = f l -  T f  > t 

Thus 

(3.12) 

v =  ( E > l - - S T ) - '  ( f > l - S f , )  

u = ( E , -  T S ) - '  (f~-- Tf>l) 

are unit operators in subspaces L ~  and L>+~, respectively. Here E , ,  E>,  
F rom this we get the decomposit ion (3.12). II 

Our  next aim is an estimate of the operator  norms in L of the 
operators Ha[~./~ and (H/~[~.~,) - I  

L e m m a  3.6.  The following estimates are true (for fld< 1/100): 

[In/~l ,,,~ll ~< 1 + 15fld 

1 
II(n/sl~.+,)- 'tl ~< 

2 - 3 1 f l d  

Proof. For  ueL~- we have H a ( u + S u ) = ~ + S ~ ,  where t~= 
(H~  o + H ~  S)u.  Then using the inequality IlullL ~ Ilu + Sul[, we obtain 

[IH/j(u + Su)ll t. ~< ( 1 + IISII ) Ilall ,_ 

~<(1 + IISII)(llnr + [In~ll- IISII)IlullL 

~< ( 1 + IISII )( IIn~011 + IIn~ II- IISII) Ilu + gull 1_ 

From here and the estimates 2 and 3 of  the previous lemma we find, for 
fld < 1/100, 

liMit I ~7 li ~< (1 + 1 lfld)(1 + 2fld + 44(fld) 2) ~< 1 + 15fld 
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By using similar arguments we have 

I I(H/D-' I ~,>+,il ~<(1 § [ITII) II(H~T§ 

Further, 

( H ~ + H ~ T ) - ' = ( H ~ ) - ' ( E + H , o T ( H , , )  + + - '  ' ) -  

Thus, as before, from estimates 1 and 4 we find 

I I  'l-' 
II(H~ § H~o T) -'11 ~ 2( 1 - 4fld) 1 - 22(fld) 2 2(1 - 4fld) 

~< [2 -- 8f ld-  22(fld) 2 ] - '  < (2 - 9fld) - '  

Finally 

ii(H/D_,l~,~ < l  § llfld<~ 1 
2 - 9f l - - - -~  2 -  31fld | 

Let us introduce the spaces • ~- and ,~. +~ as the closures in L2(l~/~) 
of the spaces .L#~- and ~ +  >~, respectively. Evidently these spaces are 
invariant with respect to the operators H/r Uj, j~  7/,i, and are proper for 
the operator M with the eigenvalue 1. 

From the estimates of Lemmas 3.6 and 3.1 it follows that the spectrum 
of the restriction H/~ [ g,.+ lies below 1 § 15fld and the spectrum of Hit [.~, +>, 
lies above 2 -  31fld. Hence for rid< 100 these spectra do not overlap. The 
latter implies that the spaces W~- and ~f  >+~ are orthogonal in L2(/l/~). 

Similar considerations and assertions are true for the spaces J :  ~- and 
~ ~, which we obtain in the same way starting with the decomposition of 

the space L - .  
As a result we have constructed the invariant subspaces W+ = ~ -  

and ~ = :Jfi- for Hit and U/, J~  7/'/, and have proved that the spectrum 
of the remaining part of Hit lies above the spectrum of Hit in these sub- 
spaces. This gives the proof  of the first part of Theorem 2.1. In the next 
section we will study the spectrum of Hit in W+ in more detail. 

4. THE  S P E C T R U M  OF H a IN #:+ A N D  #g_ 

L e t  us denote 

= e TM, x k  ~ T e~ (xk) "'" k e 7/'/, 
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and introduce a basis in 5O ~- of the form 

Vk = e~  + Se~., k e ~d 

Evidently UjVk = Vk +j, k, j e  2 ~d. Any operator B in 5 ~ ~- which commutes 
with Uj, j e  Z d, has matrix elements Bk.~-= Bk_j ,  k, j e  Z a, that depend on 
the difference k - j  (and as a result generates a convolution operator on 
coefficients of decompositions with respect to the basis). In particular, 

' ezd  because the operator H/~Iu,~=H + commutes with Ui, j , its matrix 
elements in this basis have the form 

H+Vk = Z r e ( k -  l) vl (4.1) 
I 

where m: 7/u~ C. For this function on the lattice we shall give an explicit 
expression. 

We have H ~ v  k =gk  + Sgk, where 

gk = y '  [ ( H~o)k _, e/+ + (H~  S)k _, et + ] 
/ 

Further, from this 

e + (H~o H ~ S ) k _ , e ~ ]  H ~ - V k = ~ . [ ( H ~ o + H ~ S ) k _ ,  , + + 
I 

= Y. + Hg, s ) , _ ,  o, 
/ 

Thus 

m(k  - l) = (H~o) k - i  + ( H ~  S ) k _ l  

It follows from the definition that 

(4.2) 

I 
1, k = 0  

(H~o)k---- --fl, Ikl = 1 

(0 ,  Ikl > 1 

Let S k . . . .  k e Z, 17 e Jg + ~, be the matrix of the operator S: L + ~ L + 

Lemma 4.1. The following representation holds: 

~'J~k,n - -  ] 0  { I ~dlk~,supp,q 
- -  . t . ~ k , n ~  " ~ I 
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where 

sup Y" IR,.,I < l lfld 
k 

it 

and d.,~ is the length of the minimal connected subgraph G ~ Y_'t such that 
A = [G],  [ G] is the set of vertices of G. 

C o r o l l a r y  4.1. From this lemma follows the estimate 

I(H,~iS),-jl <'-.22fl~-d(�89 I~' / I  k, j e E a  

Indeed, 

[(H,~S)k_ZI= ~ (H,~),,.t. Sj.,, 
- .  Inl > i 

~</3 y'  In(u(b))l.I/~.,,l(�89 '~','~'p'~ 

We have obviously k f f suppn  (otherwise I n l = l )  and hence 
d~i . . . .  o~,,,I, as well as In(u(b))l ~<2. Thus 

I k - j l  <~ 

I(H,~ S)a ./I ~< 2fl( �89 - Jl sup ~ ]R/.,,I ~< 22f12d( �89 -/, 
] it 

Proof. Let us consider the space .4 c ~(L~- ~ L >~) + of operators Q 
whose matrix elements Qk.,, satisfy the estimate 

IIIQIII-sup~ 1Ok.,I 2'",' ""p,'"', < 
k 

st 

In other words, we can rewrite 

Qk.,, = R,.,,( " )J:' ~"",'": 

where supk 52,, IRk.,,I < cc. 
We shall show that the operator S constructed in the previous section 

belongs to ~4 and IIISIII ~ 1 lfld. 
To this end we would like to show that the map .-~ transforms .4 into 

itself and that on the ball 

Y :  { Q ~ 4 [  IlIQIII < llfld} 

822 87 3-1-11 
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the mapping .:~ acts as a contract ion (with respect to the norm [t]'[]])- 
Because [[Q[[ ~ [[[Q[[[ the ball Y lies inside the ball 

Y =  {QI IIQII ~ l l f ld} 

Thus the fixed point  0 of  the opera tor  ~ in 1:" coincides with the unique 
fixed point S of  .~  in Y. This gives the assertion of  the lemma. 

We need to estimate the norms of  all opera tors  in Eq. (3.10). 
We have 

( H ~ )  ' = ( H ' ~ , )  ' Z VI' 
p = O 

where [see (3.7)] 

(n + mT,)(u(b)) 
( V f ) , , = f l  y,  a f ( n + m T , )  (4.3) 

Then 

I, Vl l, In " x  ~ ' "' / ,, 
r = t ip  11,=1, -z-..~=l mh;)(u(b,)) ~ " (v:/),, El i , , . ,  , = ,  I-I~'=, I In+Z. , .= ,mT,  i[I 2 f n +  )-" m,"' ) 

�9 s =  I 

where the summat ion is extended over  all ordered collections (b~, a~) ..... 
/ , /  t I a ,  + (bp, ap) of  pairs (b,.,a,),. s = l  ..... p, so that + Z , = ,  n~, ,~J />,  for any 

t = 1 ..... p. F rom all this we obtain 

ex, ,' ] (n+Z ' , .= l  m h , ) ( u ( b , ) ) ]  
I( V"Q)a-..I <~/3"Z I-I 

, = ,  IP* + Z~.  = ,  mT,~ll e 

(~),1,~ u,,,~0,,, + ~_:, , ,,,> 
x IRk.,, + "-~'= t ,,,7,'[ - (4 .4)  

Note  that for any collection { (b , , a , ) ,  s =  1 ..... p} in the sum (4.4) the 
following inequality is fulfilled: 

P + dl k ~ s u p p (  ,, + .}-7.;~ = I "~ ' >~ dl ~. u supp n } ml,.~ ) ) 
(4.5) 

Indeed the beginning u(b,,) of the last edge b v belongs to supp n', where 
n ' = n + Z , ( ' = j m ~ .  The point u(b~,_~) belongs to s u p p ( n ' - m ~ , ' ) c  i)p ! 

s u p p n ' w b , , ,  the point  u(bp_2) belongs to s u p p ( n ' - m ~ ; - m T , [ Z l ) c  
supp(n 'wbt ,  wbp_~).  Doing so, we get for any q < p  

u ( b p - u - l )  c supp(n'  ~ b , , u  . . .  ub l , _  u) 
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Moreover ,  supp n c supp n' w b~ w . . .  w bp. From this, for any connected 
graph G such that  k w s u p p n '  c [ G ]  the graph G " = G w b ,  w . . .  w b ,  is 
also connected and supp n c [G ' ] .  This gives the inequality (4.5). 

Thus we have the estimate 

l( V Q)/,.,,I ~< (2~) 1' (4) d"  "'"~"'/~,/,, 
_ k . t l  

(4.6) 

where 

k .  I I  - -  

l i t  p ,7~ l( -Z ,=_ ,mf , : ) (u (b , ) ) l  
/ J IIn' - ~.,=_~ m Z :  II -~ 

p t ~'p I (n ' -Z. ,=3mT,:)(u(be)) l  In (6/, )1 
• i in,_Z/,=3mT,:l l  2 " iln, l l - - - - -~  IG.,, 'I 

In the latter expression the summat ion  is extended over (a t ,  b,)  ..... (a,,, b/,), 
n' which satisfy the condit ions In' - Z~'-q mT([ > 1, q = 2 ..... p, 117'[ > 1, and 
n'  - Z ( ' = ,  mT,  i = n .  

Now we perform the summat ion over (a~,b i}  for fixed (a2, b2) ..... 
(G,, b,) ,  n'. Then we do so over  (or_,, b2) with the others fixed, and so on. 
As a result we get 

IRk.,, I ~ (4d)" ~ IR,.,,I ~ (4d)" IIIQIli 
i I i I ' 

Finally, 

I((H~) ' QH,,~,),.,,I 

1 �9 
<~ v:~.~ ~.. I( v"OH,~,)k.,,l Nn H- ,, = .  

l �9 " 

<~ Y, I(v'o)~.,,l+fl Z 
p = r 

1 : ~ '" :  

Z 
p = O  ( "~Z ' / .  M = I 

1( V'Q)a. +,..,,1 

2 (2fl)" IRk';', +2f l  2 (2//)" IR2'~,.,,I 
/" = 0 p ,  c 

Then 

_<! 
[[[(H~) ~ QH'+'Ill ~ 2 

"- I + 4fld 
~. (8f ld)"  ( 1 + 4fld) 1]t Q[[[ - 2( 1 - 8fld) Ill QIII 

p = [ I  
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Repeat ing the previous considerat ions,  we have 

II[(H~,)-' QH,~ QII[ ~ < ~  I[IQIII= 

and 

III(H,~)-' H+,III < - -  
4fld 

1 - 8 f l d  

Thus  we find that  

1 + 4fld fldfl 
111.TOlll ~<2(1 -Sfld)IIIOlll ~ 1 dlllOlll_, + 4fld 1 -- 8fld 

As in the p roof  of  L e m m a  3.5, the latter est imate shows that  tbr f ld< 1/100 
the opera to r  ~ t ransforms ~ into itself and acts on Y as a contract ion.  

R e m a r k  4 . 1 .  In  a similar way it can be shown that  the matr ix  
demen t s  of  the ope ra to r  T satisfy the same est imate 

IT..,I < l lfld(�89 a:' ~,,o,,,,: 

F r o m  Corol lary4.1  and formula  (4.2) it follows that  

, l ( k ) = m . ( k ) + m l ( k ) ,  k e Z  a (4.7) 

where 

{ 1, k = O  

m , , ( k )  = fl, Ikl = 1 

I k I> l  

and 

Im ,(k)l ~< 22fl-~d( �89 

Now we need to introduce an o r thonorma l  basis in J f  ~-. Let us consider  
the G r a m m  matr ix  D / ~ = ( d , . j ) , . j ~ , ,  with the elements 

d , . j = d k  j = ( v  k, v j ) / ,=( (ea  + +Sea~;), (e + +Se~))/~ 

where ( -, �9 )/r - ( ", " )L-',m,,' 
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L e m m a  4.2. The elements of the Oramm matrix D/~ have the form 

d k _ / = O k . i + a k _ / ,  where lak jl~<Cfl(') 'k j' (4.8) 

with an absolute constant C. 

We give the proof of this lemma in the Appendix. 
The matrix D/~ generates a convolution operator in the space 12(7/d) 

acting by the formula 

12(7/")~u= { u ( k ) l k ~ Z  'z} r--,(D/,u)(k)= ~, dk_iu( j )  
i E E '1 

Lemma 4.3. There exist operators D)~- and D/~ ' -  which act in 
12(E a) as convolutions: 

I " d ( I  2) (D/~-u)(k)= ~, I, i u(j) 
j ~ E '1 

(D / ; ' 2u ) (k )=  y'. ' . ~, . d k ~- u(J) 
i e Z 't 

The functions d~ +-'2~ have the form 

d~-+' 21=&/,.o +b-+ k 6 7 / J  k '  

where 

Ibk-+l ~< CB(3/4) I~l 

with an absolute constant C. 

This lemma is proved ill the Appendix. 
Introduce now a new basis in Jr+ by using the operator Dr7 '2. For 

any k e 7/d we put 

w~. ~. d ~- ~ 2~v 
= k - /  / 

j �9 E d 

From this definition it follows immediately that { w , [ k e T / d }  is an 
orthonormal basis in ~f+ and Ujw k = wk+ j .  The operator H~- acts in the 
basis { w, [k ~ 7/'1} as a convolution: 

H+,vk = ~ rh(k--j)wj 
j �9 ~d 
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where 

Here 
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mutativity of this operation we have ~fl = m). 
Let us introduce the unitary map 

V+: Jf+ ~ L2(T'l, d2) 

given by the relation 

(V+ wk) (2 )=e  ilk.;,~, k E Z  a, 2 ~ T  a 

This map transforms the translation operators Uj, j 6 7/'1, into the operator 

(OiJ')(2)=ei'i.;.J'(2), J '~L2(T'l ,  d2) 

and the convolution operator H~ into the operator /4~- given by the 
formula 

( B ~ f ) ( 2 )  = ff~(2) J(2), I~ T a 

Here f f , ( 2 ) = Z k ~ z , m ( k ) e  ~';~, 2 e T ' (  From (4.2) and Corollary4.2 we 
have 

d 

ff7(2)= 1 - 2 f l  y" cos 2c"~+x(2) (4.9) 
s = l  

where ~c(2) is an analytic function in the strip 

W= { ]Ira 2"1 < log  3/21s= 1 ..... d} c C a / Z  a 

Here C'I/Y_ a is a complex manifold obtained by the factorization of C a with 
respect to the shift group 

C'/~ z = (z ~l~ ..... z~'/~ ~-~ z + 2rck, k ~ 7/'/ 

Due to (4.7) we have the estimate 

lh(2)l <~22d4afl 2, 26  W (4.10) 

Because the spectrum of H~- coincides with the set of values of the function 
ih from (4.9) and (4.10) we get that this spectrum is included in 
[ 1 - 2dfl - l ld4afl =, 1 + 2dfl + 1 ld4afl2]. 

If~(k)=d I 12~,m,d~l /=~(k)=m(k) ,  k ~ Z  '1 

* denotes the discrete convolution operator (due to the com- 
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In the case of the space ~g we arrive at the same function /~(tl), as 
follows from the unitary equivalence of H~  and H {  given by 

J H ~ - J -  n = H ~  

where J is the unitary involution introduced in Section2. Thus 
Theorem 2.1 is proved completely, l 

5. A S Y M P T O T I C S  OF T H E  C O R R E L A T I O N S  

In this section we give the proof of Theorem 2.1. Let f b e  a function 
on T with the Fourier decomposition 

f ( q ) =  ~. Cm el'"', q e T  
l i t  E ~- 

We suppose that x" Ic.,l<oo. Let F ~k'') k o e Z  '1, denote the following 
/ - - , m  ,1" 

cylinder function on s 

F}k,O(x) = f (x~ . , ) ,  x e ~  

It is clear that F~6,,~ e L and 

V)6,,'(x) = c,, + c, e~%(x) + c _, e _, , , , (x)  + ['~6. '(x) 

where 6,., e o,# ~-, 6g,(k)=6k.k,,, k e Z  a, e,~k, ' e L ~ ,  e_,~,, e L  i , and ['.~6,,) e Lr~.,t. 
Further, 

= h:,,., + >, h:,,., h L > , e Z +  

By the formulas that follow after (3,12) we have 

h~,., = (E,  - T S )  - ' e,~k, ' + S ( E ,  - T S )  - b e,% e s ~- 

h~+,.>, - ( E > , - S T )  I S e , ~ , - - T ( E > , - S T )  - l  S e , % e Z P  + = . . > ]  

Let us consider the orthogonal decompostion 

h ; , . , =  Z q~" 'wk  
k ~ Z ' l  

L e m m a  5.1. 

(5.1) 

The coefficients q~},~ have the following representation: 

q~k,~ = ~.~, ,  + 0~ , , ,  k e 71 '~ 



638 Kondratiev and Minlos 

where 

I(U,,)I ~< C~rlk -k,,i (52) 

with an absolute constant  C and some r e ( 0 ,  1 ). 

The  p roo f  of  this l emma is given in the Appendix.  
F r o m  the representat ion (5.1) and (5.2) it follows that  the function 

hk+, = V+hk+ , is an analytic function on the torus T "  and /';k+ , ( ) , ) # 0 ,  
2 e  T ' (  

For  e ,% we can construct  a similar decompos i t ion  

e .,% = hA,,. i + h~,. > i 

and I3k,,. t =  1/_ h~,.~ is again an analytic function on the torus T ' (  It is easy 

to see that  hk,,. , =Jh~+.,., and therefore h~+.,(2)=~k,,. ,(2). 
As a result we have the following decomposi t ion:  

F' t " , '=c , ,+c ,h~+. ,+c  ,h~, . ,+c,h~+, .>,+c ,h,~,.>n+F~' '') (5.3) 

Note  that  c(~= (F;~,')>/~, where < .>/~ means  the expecta t ion with respect 
to/%.. 

A similar decompos i t ion  is true for the function G~,~(x)=g(:, 'k,,),  
.u ~.O: 

c;',,' +b + +b  ,hi;,., +b, / ,L .>,  +b  . . . .  , _ _ .  = .'." //~ ihk,,. I _ +C;  (k''j (5.4) 

where {b, Is ~ 77} are the Four ier  coefficients of  g. 
It follows from the definition of  the stochastic dynamics  in our  model  

that  

<f(~.k,,(O))t~(~k,,(l)>.~=(F~.,,, ' /~ ,/,-0, T,  G.~ )L.2~,/,) 

where T~r -'t#', t>~O. Using (5.3) and (5.4), we obta in  

( F C k , , •  -rSc:~k,,h _ ( F(lk,,I) /t ,." ~.lk,o\ 
.1" ~ l t u . t ~  l L 2  l t l  I - -  . x ~ t~ / [ I  

+clbl(hl~, .  I e - ' " ; h  + , k,,.,),~? 

+ C-I/;-I(ha~,.  I, e - ' n l h k . . i )  ,e, 

, ) - - I l l . i t  + 41 +c jb l (h~ , .  > , ,  e n k  .... t ) , ,  

+C nb j(h~?.>n,e-'n~'h~,.>t)~, k 

+ (p(k,,) o -,"r~,~(k,,h (5.5) 
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Because the spectra of operators H ~ ,  H~r are located above 2 - 3 1 f l d  
(see Lemma 3.6), we find that the last three terms in (5.5) have an estimate 
of the form const �9 e - , 2  - 3,/~,~) 

Now we need to find the asymptotics of the second and third terms in 
(5.5). We have 

e nk,,.,),~ ; = Ihk+.l(2)l-e "r'l~"d2 (5.6) 
T d 

By using (4.9) it is not hard to see that the function d1(2) has a unique 
point ;t~ of nondegenerate absolute minimum (lying near 2 =0).  Applying 
the Laplace method to (5.6), we get the following asymptotic equality: 

fT , i  ~ + 2 ]hk,,.~(2) [ exp[--tffT(2)] d2 

IhL.,(~,,)l- 
=(21~)3,1,. 2 t,#2(Det A)l/2exp[--tl~l(2o) ] (1 +o(1)), t--* co 

where A is the Hessian of the function m(2) at 2o. The third term has 
similar asymptotics. From the stated asymptotics and (5.5) we get finally 

(f(d~,,(0)), g(~k,,(t)) ) .~ 

( c , b , + c  ~b ,) - 
--(2rc)3, /------27~i,  2 Ih~+,.d2,,)12exp[-t,h(2o)] (1 +o(1)), t ~  co 

Theorem 2.2 is proved. II 

A P P E N D I X  

A.1. The Proof  of  Lemrna 4.2 

The elements of the Gramm matrix are 

dk / =  (ek, e~-)/~ + (Sek, ej)/~ +(ek,  Sei)l~ + (Sek, Se/)/j 

Let us consider each term separately. 

1. (ek, e~.)/~=l f o r a n y k ~ Z d a n d  

, , j ~ Z  , C f l < l  I(ek ej)/~l <~(Cfl) I~-/I k, " ,i 

where C =  C(d) is an absolute constant. This estimate follows from a 
standard consideration of the high-temperature regime; see, e.g., ref. 13. 

8__87 3-4-12 
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If Cfl < 1/2, then 

(Cfl)lk--i)<~2Cfl(�89 Ik-jl, k # j  (A.1) 

2. (Se,,  e~)l~=Z, , S,.,,(e,, ei)/~. Again it can be shown (13) that 

I(e. ,  ej)~,l ~< (c/~)""~ ~) ~ < (+),,(,up,,,,.j, 

where p(A, j) is the distance between the set A and the point j. Using these 
estimates and Lemma 4.1, we arrive at the estimate 

l(Sek, ej)z,l ~< Y. ( � 8 9  IRk.,,l (+),,,.,ooo,,.*) < 1 t/~(.))k-J) 
n 

In a similar way we find 

I(ek, Sei)/~] ~< 1 lfld(�89 I* -il 

3. ](Sek, Se,,)il<~(llfl)'-(1/2) I~-ir. Here we have used again the 
inequality 

,2 l ~ / [ - ' R " P { s u p P  t*. s u p p  t~'~ [(e,,; e,, ~/~ "-~ ~'~n/ 

where p(A, B) denotes the distance between the sets A and B. From these 
estimates (4.8) follows immediately. I 

A.2.  The  Proof  of  L e m m a  4.3 

It follows from Lemma 4.2 that the Gramm matrix D/~ has a decom- 
position D I ~ = E - A ,  where E is the unity operator in l,(7/'~) and A is a 
convolution operator. Let us consider the power decomposition 

Then 

(1- - t )~ '2=1 - ~ %#', ~ , > 0 ,  p e n  
p =  I 

D)i2=E - ~ o~,,A p (A.2) 
p = l  

The operator A ~' is a convolution operator, too, and has the matrix 
elements a~')j having the estimate 

[a(!,)/[<~(Cfl)t,(~)lk Jl, k , j~y_d 
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From this estimate and the decomposition (A.2) we come to the assertion 
of the lemma for D~/-'. In a similar way we get the assertion about D/~ ~/-" 

A.3. The Proof of Lemma 5.1 

From Lemma4.l  and Remark4.1 it follows easily that the matrix 
elements of the operator TS: L ~ -~ L~ have the estimate 

[(TS)k i[ ~<const.fl2(�89 k, j e Z a  

Then, as above, we get 

(El -- TS) -t  e~% = e,% + ~_~ gk,,- ke,~k (A.3) 

where 

From this we obtain 

Because 

we have 

Ig/I ~< const, fl2(~)ljI, jeT/a  

h~+, . t=v&~+Zgk,  kVk 
k 

= Z ,,,., = ,,,, + Y. b;_;  w,, k z,' 
./ i 

h~+. ,=wk,+Zb~+_kwt-+Zgk,  kWk+~[gk,--kb~, iW~ 
k I,. k.i 

This gives (in the notations of Lemma 5.1 ) 

,~qk ~_b + + ~  •  b+)k,, ~, k n- ~,~ ,I,- ~//,- - -  k o k o r , "  o - " 

The estimates (A.3) and (A.4) give the required estimate (5.2). 

(A.4) 
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